THE PROLIFERATION OF HETEROGENEOUS INTEGRATION APPROACHES IN SILICON (NITRIDE) INTEGRATED PHOTONICS

Roel Baets

SPIE Photonics West 2020

ACKNOWLEDGEMENTS

Photonics Research Group

professors P. Bienstman, W. Bogaerts, S. Clemmen, B. Kuyken, G. Morthier,

G. Roelkens, N. Le Thomas, **D. Van Thourhout**

many postdocs and PhD's

illum

GHENT

UNIVERSIT

IMEC CMOS process line

and ePIXfab www.epixfab.eu

Funding and collaborations through national and EU research projects

SILICON PHOTONICS PLATFORMS TODAY

 $\widehat{\mathbb{m}}$

GHENT

UNIVERSITY

nnec

Today's mature silicon photonics manufacturing platforms are "homogeneous" or "monolithic": they build on materials and processes that are well established in CMOS environments.

OUTLINE

The need for heterogeneous integration Diversity in heterogeneous integration Moving to wafer-scale heterogeneous process flows The case of III-V on silicon

LIMITATIONS OF CURRENT SOI AND SIN (OPEN ACCESS) PIC PLATFORMS

 $\begin{array}{c}\n\hline\n\hline\n\text{Im}\n\end{array}$ GHENT

WHAT IS HETEROGENEOUS INTEGRATION

Generic:

Heterogeneous Integration refers to the **integration** of separately manufactured components into a higher level assembly that, in the aggregate, provides enhanced functionality and improved operating characteristics

In silicon photonics:

Heterogeneous Integration refers to the **wafer-level integration of separately manufactured components or CMOS-uncommon materials onto silicon photonics wafers** that, in the aggregate, provides enhanced functionality and improved operating characteristics

FUTURE SOI AND SIN (OPEN ACCESS) HETEROGENEOUS PIC PLATFORMS

umec

OUTLINE

The need for heterogeneous integration

Diversity in heterogeneous integration

Moving to wafer-scale heterogeneous process flows

The case of III-V on silicon

HETEROGENEOUS INTEGRATION: A STORY OF MANY MATERIALS

III-V on silicon

- Colloidal quantum dots on silicon
- Liquid crystals on silicon
- Electro-optic materials on silicon (LiNbO₃, BTO, PZT, polymers, ...)
- 2D-materials (graphene, WSe₂, WS_{2,} MoS₂...)

Etc.

FIGURES OF MERIT FOR A PHASE MODULATOR

Modulation efficiency $V_{\pi} L_{\pi}$

Voltage swing

Modulation bandwidth

Optical bandwidth

Size

 $\widehat{\mathbb{H}}$

Optical insertion losses

Spurious intensity modulation

Power dissipation

mnec

CMOS compatibility

SOI carrier depletion/injection modulators are good enough for many applications but fail to serve others

Exploration of many alternatives, based on heterogeneous integration of electro-optic materials with SOI or SiN Organic materials Lithium Niobate BTO (Barium Titanate) PZT (Lead Zirconate Titanate)

Emergence of waveguide-MEMS based approaches

HETEROGENEOUS MODULATOR TECHNOLOGIES

Phase modulators:

 $\widehat{\mathbb{m}}$

GHENT

mnec

- $-$ LiNbO₃: thin films bonded on silicon (nitride) circuitry (Harvard, Stanford, Sun Yat-sen University, UCSD, Sandia, UCSB…)
- BTO (Barium Titanate): epitaxially grown on silicon with STO buffer layer (IBM, Yale, imec, …)
- PZT: sol-gel deposition on any substrate (Ghent University)
- EO-polymers: (KIT, ETHZ…)

Amplitude/phase modulators:

- Graphene: layer transfer (Berkeley, CNIT, imec …)
- 2D TMDCs (Columbia University, George Washington University…)

LITHIUM NIOBATE ON SI HETEROGENEOUS INTEGRATION

P. O. Weigel, *et. al.*, "Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth," Opt. Express **26**(18), 23728–23739 (2018). He, M., *et. al.*, "High-performance hybrid silicon and lithium niobate

 $\widehat{\mathbb{H}}$

GHENT

UNIVERSITY

ເກາec

100 Gb s⁻¹ OOK

Mach-Zehnder modulators for 100 Gbit s^{-1} and beyond," Nat. Photonics **13**, 359–364 (2019). https://doi.org/10.1038/s41566-019-0378-6

LITHIUM NIOBATE ON SIN HETEROGENEOUS INTEGRATION

L. Chang, *et. al.*, "Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon," Opt. Lett. 42, 803- $806(2017).$

GHENT

UNIVERSITY

mnec

N. Boynton, *et. al.*, "A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator," Opt. Express 28, 1868-1884 (2020).

Height

b

200 nm

LE

Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon

Stefan Abel, et al, *Nature Materials* (2019)

 2 nm

 2 nm

BTO

BTC

 Al_2O_3

SiO₁

Epitaxy on Silicon wafer Bonding on SiO2 a-Si waveguides

 $AI, O₁$ $S1$

nature
materials

 100 nm

 V_π .L=0.45V.cm 50GBit/s in plasmon slot waveguide

Nanophotonic Pockels modulators on a silicon nitride platform

Koen Alexander et al, *Nature Communications* (2018)

Article **OPEN** Published: 03 April 2018

 $\sqrt{4}$

MMI

MM

Out 4

 (a)

 (c)

Transmission [dB]

 -6

 -3

 $\mathbf{0}$

Bias voltage [V]

3

Silicon-Organic Hybrid (SOH) Mach-Zehnder Modulators for 100 Gbit/s on-off Keying

G

Si slab

Opt. $\mathcal{E}_{0,x}$ field

 $\rightarrow x$ ^{Si'rail} Si slab

 $SiO₂$

Silicon

 (1)

EO polymer

Si rail

 $(1)(2)$

 $U_{\rm pol}$

 \overline{R}

 h_{slab}

 $\left(3\right)$

 W_{fail}

 $RF E_{x,RF}$ field

 W_{slot}

 \bigcirc U_{drive}

 (2)

 (b)

V_π L=0.09 V.cm, allows very high speed modulators with low drive voltage

 $\widehat{\mathbb{m}}$ **GHENT** mnec **UNIVERSITY**

18 Stefan Wolf et al, *[Scientific](https://www.nature.com/srep) Reports* (2018)

A graphene-based broadband optical modulator

Ming Liu^{1*}, Xiaobo Yin^{1*}, Erick Ulin-Avila¹, Baisong Geng², Thomas Zentgraf¹, Long Ju², Feng Wang^{2,3} & Xiang Zhang^{1,3}

Current demonstrations up to 50GBit/s (eye diagrams), by CNIT & IMEC

GRAPHENE MODULATORS

20

THENT
GHENT
UNIVERSITY

mec

First Demonstration 50GBit/s modulation with graphene modulators (CNIT)

20

arXIv:1906.00459 [pdf] [physics.app-ph] physics.optics]
Low-loss composite photonic platform based on 2D semiconductor monolayers

Authors: Ipshita Datta, Sang Hoon Chae, Gaurang R. Bhatt, Mohammad A. Tadayon, Baichang Li, Yiling Yu, Chibeom Park, Jiwoong Park, Linyou Cao, D. N. Basov, James Hone, Michal Lipson

 $\widehat{\mathbb{I}}$

GHENT

- **Strong phase-modulation observed in several** 2D-materials
- Very low amplitude modulation
- Based on carrier injection: speed ?

See also Sorger-group (several arxiv papers)

OUTLINE

The need for heterogeneous integration

Diversity in heterogeneous integration

Moving to wafer-scale heterogeneous process flows

The case of III-V on silicon

MOVING TO WAFER-SCALE HETEROGENEOUS PROCESS FLOWS

Challenges:

- Thermal budget
	- Annealing steps for heterogeneous material may damage earlier processing
	- Annealing steps needed in later processing may damage heterogeneous material
- Contamination
	- Heterogeneous material may contaminate process tools (eg gold)

DIVERSITY IN HETEROGENEOUS PROCESS FLOWS

1) process wafer or chiplets process wafer or chiplets process wafer or chiplets process wafer or chiplets 2) Integrate on Si wafer 2) Integrate on Si wafer 2) Integrate on Si wafer 2) Integrate on Si wafer

UNPROCESSED

DECISION FACTORS

ш

້ ເາາາec

umec

UNIVERSITY

OUTLINE

The need for heterogeneous integration

Diversity in heterogeneous integration

Moving to wafer-scale heterogeneous process flows

The case of III-V on silicon

WAFER-LEVEL APPROACHES FOR III-V INTEGRATION ON SI PICS

die-to-wafer bonding

 $\widehat{\mathbb{I}}$

GHENT

UNIVERSITY

umec

III-V epitaxy on silicon

micro transfer printing

III-V ON SILICON TECHNOLOGIES

$MICRO-TRANSFER-PRINTING (µTP)$

THE GHENT

UNIVERSITY

umec

μ-TP combines advantages of flip-chip and die-to-wafer bonding

30

TRANSFER PRINTING

 $\begin{array}{c}\n\widehat{\mathbf{m}} \\
\widehat{\mathsf{GHENT}}\n\end{array}$

UNIVERSITY

umec

Transfer of micro-scale III-V coupons/devices to a Si target wafer

InP, GaAs, SOI, 2D materials, 0D materials

TRANSFER PRINTING OF III-V SEMICONDUCTORS

UNIVERSITY

TP COMBINES ADVANTAGES OF FLIP-CHIP AND DIE-TO-WAFER BONDING

Massively parallel

- >10,000 devices (LEDs) transferred per 45s cycle demonstrated
- *Flip chip transfers individual devices.*

Position tolerance of ±1.5m at 3s **in large arrays**

- $\pm 0.5 \mu$ m and better when printed in small arrays
- Pattern recognition based

The highest quality source materials used

— Can be pre-processed

iii

GHENT

mec

Different types of devices or materials can be printed close to each other

Efficient use of expensive materials

- Width of devices << conventional for higher packing
- Substrate can potentially be recovered

Independent of source substrate diameter

— InP wafers 50-100mm; Si wafers 200-300mm diameter

FIRST III-V-ON-SILICON µTP DFB LASERS

After transfer printing of coupons Lasers after post-processing

TRANSFER PRINTED C-BAND SOAS

ALIGNMENT TOLERANT OPTICAL INTERFACE

 $\begin{array}{c}\n\hline\n\hline\n\text{III}\n\end{array}$ GHENT

UNIVERSITY

III-V-ON-SI INTEGRATED WIDELY TUNABLE LASER

III-V-ON-SI INTEGRATED WIDELY TUNABLE LASER

 $\widehat{\mathbb{m}}$

GHENT

[J. Zhang et al., IEEE ECOC, 2019]

III-V-ON-SI INTEGRATED WIDELY TUNABLE LASER

 $\begin{array}{c}\n\widehat{\mathbf{m}} \\
\widehat{\mathsf{GHENT}}\n\end{array}$

UNIVERSITY

INTEGRATION OF AMPLIFIERS AND LASERS ON SILICON NITRIDE

- Why: low loss, broader wavelength range
- Non-trivial given large index mismatch between InP and SiN
- Solution: intermediate amorphous silicon layer layer

INTEGRATION OF AMPLIFIERS AND LASERS ON SILICON NITRIDE

On-chip Gain

UNIVERSITY

41

PRINTING ARRAYS OF C-BAND PDS

83/84 successful prints Good device uniformity

CALADAN: INTEGRATION ON FULL PLATFORM

Heterogeneous integration is key to enabling new functionalities in silicon photonics

Broad diversity of heterogeneous material combinations and technologies in research

Adding heterogeneous integration to a complete process flow is non-trivial

Micro-transfer-printing has high potential in view of its agility and combination of "best-in-class" technologies

5TH EPIXFAB SILICON PHOTONIC SUMMER SCHOOL GHENT UNIVERSITY (BELGIUM)

DATE : 15 – 19 June 2020

KEY FEATURES

- Learn all about silicon photonics: from technology to applications
- Geared towards industrial and academic participants
- A perfect blend of learning and networking

MORE INFO:

e-mail: info@ePIXfab.eu web: https://epixfab.eu/trainings/upcoming-trainings

4 th ePIXfab Silicon Photonic Design Course

DATE : 8 – 12 June 2020

KEY FEATURES

- 5 days hands-on silicon photonics design
- Layout, circuit simulation, design rules,
- Have your design fabricated and measured

: Promoting silicon photonics science, technology, and applications

umec **FRSITY**

PHOTONICS RESEARCH GROUP

Roel Baets

- E roel.baets@ugent.be
- T +32 496 559975

@PhotonicsUGent

www.photonics.intec.ugent.be

П

