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Abstract: 4π Raman microscopy provides better resolution and Raman signal than standard
Raman microscopy. We determine the improvement using a silicon layer and show its
applicability to biological specimen for the first time.

OCIS codes: (180.5655) Raman microscopy, (170.1790) Confocal microscopy

1. Introduction

We recently demonstrated the application of 4π Raman microscopy to quantitatively characterize inorganic nanolayers
in a multilayer stack [1]. This technique improves the spatial resolution and, in contrast to conventional 4π fluorescence
microscopy [2], it does not require any fluorophores. As it is based on Raman signatures, it can spatially resolve the
chemical information inside a complex sample in a noninvasive manner.

Here, we first discuss the performance of 4π Raman microscopy when applied to a thin silicon slab. Then, we study
the spatial chemical distribution inside a biological specimen. We show that this technique unveils the presence of
small and large scale structures inside filamentous Deltaproteobacteria of the Desulfobulbaceae family – also known
as cable bacteria.

4π microscopy improves the axial resolution by adding a second objective to a standard conventional confocal mi-
croscope to excite the sample from two opposite directions. Both contra-propagating beams produce an interference
pattern in the common focal spot, reducing the effective illuminated volume and yielding an almost isotropic resolu-
tion. In order to stabilize both counter-propagating beams at the sample plane, the relative phase between beams has to
be probed exactly at that plane. This is achieved,as described in [1], by using a partial reflection, normally provided by
the sample itself or, in case of low reflection biological samples, by the substrate. The Raman signal from the sample
can then be recorded for different relative phases of the contra-propagating beams, i.e. for different positions of the
exciting interference pattern.

2. Silicon nanolayer

To characterize the system, we used a Silicon 215 nm thick free-standing membrane. The refractive index of silicon
at the pump wavelength of λ = 785 nm is 3.7, therefore, its optical length in terms of wavelength is 1.01λ . Since the
optical length of the membrane matches the wavelength it acts as a Fabry-Perot cavity at resonance.

Silicon has a strong Raman peak and, due to the high refractive index, it provides a strong reflection. These two
facts render the silicon membrane an ideal sample to characterize the 4π Raman microscope.

In Fig. 1(a) the two main Raman peaks of the silicon layer are shown, a peak at 302 cm−1 and a much stronger one
at 520.4 cm−1. Instead of axially moving the sample we equivalently scanned the optical phase of one of the pump
beams, and that is what we call nominal phase φ . The counts of the strongest peak are plotted and fitted to a sinusoidal
curve in Fig. 1(b). We normalized the counts with respect to the standard or normal confocal Raman spectrum. The
normalized sinusoidal curve should ideally reach a maximum value of 2 due to the redistribution of energy withing the
focal spot. We attribute the lower experimental value of 1.7 mainly to an intensity mismatch between the two pump
beams.

As discussed in [1], only an infinitesimally thin feature would have a strong enough contrast to reduce the peak
counts to zero but also to have twice as many counts as a standard spectrum. Features thicker than the axial resolution of
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Fig. 1. (a) 4π Raman spectra of the 215 nm silicon layer. (b) Response of the 520.4 cm−1 peak versus
nominal phase and normalized with respect to the standard response. Crosses indicate experimental
data points. Red and blue colors link data from both figures.

a normal Raman microscope fill the confocal volume and therefore the Raman signal remains unchanged for different
nominal phases. This arguments do not apply for the silicon layer due to Fabry-Perot cavity effects.

3. Cable bacteria

Biological samples pose additional challenges to the 4π Raman experiments. They typically have much weaker Raman
signal than the silicon nanolayer studied above, meaning that the measurement acquisition time has to be longer.
Thermal fluctuations and drifts in the system become relevant at this time scales. Thermal vibrations of the sample are
also an issue when resolving nanometric features inside the sample. Here we use relatively big bacteria (approximately
4 µm thick) of the Desulfobulbaceae family attached to a 1 mm thick and low Raman background CaF2 substrate to
minimize these issues. Such a thick substrate, however, induces aberrations and forces us to use a lower numerical
aperture objective lens in the bottom part of the microscope.
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Fig. 2. (a) Bright field image of the cable bacteria. The red cross indicated the point at which the
Raman spectrum is taken. (b) 4π Raman spectra of the electric bacteria at different nominal phases,
(c) Response of the 1153.2 cm−1 peak normalized with respect to the standard response. Crosses
indicate experimental data points. Red and blue colors link data from (b) and (c).

Fig. 2(a) shows a bright field image of the cable bacteria. The cross indicates the position at which the Raman
spectrum in Fig. 2(b) was taken. We see that the counts of some of the Raman peaks change for different nominal
phases. That proves that the 4π Raman microscope can resolve features smaller than what a conventional confocal
Raman microscope can. Only the peaks that vary for different nominal phases correspond to features thinner than the
resolution of the microscope.

The intensity variations, with a contrast of 1.2 as seen in Fig. 2(c), are not as strong as the variations obtained from
the silicon layer. This can be partially explained by the aberrations suffered by one of the pump beams and by the
fact that these features are smaller than the conventional resolution but still thick enough to reduce the contrast of the
interference pattern. Another factor reducing the contrast could be that the peaks are generated by a combination of
both thin and thick sample features.

In conclusion, 4π Raman microscopy is able to resolve features inside biological specimen smaller than the resolu-
tion of a conventional confocal Raman microscope.
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