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Abstract Recently, we proposed a node-based framework that can be used to simulate large
circuits of nonlinear photonic components both in the time-domain and in the frequency-
domain. In that framework, components are described using a flexible and very general
‘node’-definition, allowing to simulate circuits that contain a wide variety of components
with different physical effects. In this paper, we extend the node-definition of this framework
such that the linear coupling between access waveguides and resonance states in optical
resonators can be more explicitly incorporated, reducing the simulation time in large-scale
cavity circuits.
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1 Introduction

Many optical resonators can be described using a Coupled Mode Theory (CMT)-like format
for the equations concerning the optical field. For instance, themodels that are used to describe
the dynamics of a passive nonlinear microring (VanVaerenbergh et al. 2012; Fiers et al. 2014)
or a microdisk laser (Alexander et al. 2013; Van Vaerenbergh et al. 2013), are CMT-based.
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In this paper we will point out how the node-based framework presented by Fiers et al. (2011)
can be adapted to CMT-style models, and how this adaptation can sometimes significantly
increase the simulation speed. For instance, the large-scale circuit simulations performed by
Fiers et al. (2014) took advantage of this speed up.

2 Reshaping the system equation towards CMT

Fiers et al. (2011) derived the generalized connection matrixCin,ex , which models the linear
and instantaneous transmission of the waves that originate from a generalized ‘external’
sources vector sext (t) and travel through the components of the circuit. This connection
matrix speeds up the time-domain simulations when the inputs of all the memory-containing
(MC) components (e.g., resonators or lasers) need to be calculated for a given sext (t), as it
eliminates the memoryless (ML) components (e.g., splitters or instantaneous waveguides)
from the circuit. One single sparse matrix product

sin,MC (t) = Cin,ex sext (t), (1)

updates the inputs of the MC simultaneously for all the nodes. As this improvement in speed
is clearly due to the linearity of the signal transfer encoded in the scatter-matrix, we will
now investigate how additional linear behavior in the MC node can be exploited to make the
framework even more efficient.

In CMT models, the coupling between the optical modes of the cavity and the access
waveguides is also linear. Typically, the CMT equations of a nonlinear resonator i are given
by:

dai
dt

= Miai + KT
i si,in + Ni (a, t, . . .) (2)

The function Ni describes the nonlinear contribution, e.g., due to changes in absorption or
refractive index by the Kerr nonlinearity. If the cavity model contains additional dynamic
variables, such as the number of free carriers, or the temperature, these extra equations can as
well be shoehorned in the previous matrix format, by extendingKT

i in the appropriate places
with zeros andMi with linear contributions of the corresponding ordinary differential equa-
tion (ODE), while the remaining nonlinear terms can be incorporated in Ni (a, t,…). More
generally, every MC component can be trivially transferred into this format, by extending
the original ODE system with additional Mi , KT

i and Di matrices equal to zero. As we use
sparse matrices, these additional zeros have no significant influence on the simulation speed.

Even if the resonator is nonlinear, the coupling of themodes and input signals to the output
stays linear:

si,out = Si si,in + Dia, (3)

We now define the linear coupling matricesM,KT andD for the circuit as a whole. These
matrices are block matrices, constructed from the submatricesMi ,KT

i andDi for all the MC
nodes i ∈ {0,…, N − 1}. Using the same syntax as before, M linearly couples the states to
the states, KT couples the input to the states, while D couples the states to the output. If we
suppose the system has s states and p ports, thenM is s × s dimensional, while D andK are
both p × s dimensional. Using those matrices, the total ODE of the circuit becomes:

da
dt

= Ma + KT sin,MC + N(a, t, . . .) (4)

The generalized source term defined by Fiers et al. (2011) can be split into two parts: a linear
part, related to the linear coupling by Di of the resonators in the circuit, and an external
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source term s′ext (t) of which the linear coupling terms are subtracted (e.g., containing the
input signals of the sources in the circuit, or the outputs of waveguides with delay), such that:

sin,MC = Cin,ex
(
Da + s′ext

)
. (5)

Interestingly, by doing this we already increased the flexibility of the framework. Indeed,
whereasM is originally considered to be a block-diagonal matrix, coupling only states within
a node, we can now also extend it to directly couple states between different nodes, whereas
in the previous formalism, only optical coupling through the ports was allowed. The current
formalism, e.g., allows for a more generic way of implementing optical coupling between
cavity modes, using the theory developed by Little et al. (1997). Also the implementation of
thermal coupling between nearby resonators is conceptually simplified by this extension.

3 Increasing sparseness

In this section, we will use the knowledge of the positions of resonators, detectors and
sources in a circuit to make the matrices in the system equations sparser, resulting in a speed
improvement of the calculation time.

If a circuit contains cavities with a CMT model, we know that s′
ext will be equal to zero at

those port positions. Similarly, port positions of detectors in the circuit will also correspond
to additional zeros in s′

ext . We will now introduce a diagonal p × p matrix IMex , that contains
a zero on the diagonal for each port that corresponds to a resonator or a detector. Using this
matrix and Eq. (5), assuming that the rows of D are only nonzero at the port positions of
resonators we obtain:

sin,MC = Cin,ex

[(
I − IMex

)
Da + IMex s

′
ext

]
. (6)

The presence of IMex in the previous equation generates additional zeros in thematrix products,
making them more sparse and hence potentially speeding up the calculations. Here, IMex can
be considered to be some kind of ‘mask’ matrix.

Additionally, when doing a time-domain simulation, it is not necessary to calculate sin,MC

at the port positions that contain sources (assuming that these sources are not influenced by
reflected signals from the circuit, as is the case in most simulations). We will now introduce
a second diagonal p × p mask matrix IMin , that contains a zero on the diagonal for each port
that corresponds to a resonator or a source. By defining s′in,MC = IMin sin,MC as the vector
that monitors the inputs of all the ML nodes, except for the sources and the resonators, we
can rewrite sin,MC to:

sin,MC = s′in,MC + (
I − IMin

)
sin,MC . (7)

Assuming that only the columns of KT corresponding to the resonators are different from
zero, KTs′in,MC = 0 and introduction of Eq. (7) in Eq. (4) gives:

da
dt

= Ma + KT
(
I − IMin

)
sin,MC + N(a, t, . . .). (8)

Substitution of Eq. (6) results in:

da
dt

=
[
M + KT

(
I − IMin

)
Cin,ex

(
I − IMex

)
D

]
a

+
[
KT

(
I − IMin

)
Cin,ex IMex

]
s′ext + N(a, t, . . .), (9)
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while s′in,MC can be calculated to be:

s′in,MC = [
IMinCin,ex

(
I − IMex

)
D

]
a + [

IMinCin,ex IMex
]
s′ext . (10)

In the previous two equations, we encounter four new matrices:
[
M + KT

(
I − IMin

)
Cin,ex

(
I − IMex

)
D

]
, (11)

[
KT

(
I − IMin

)
Cin,ex IMex

]
, (12)

[
IMinCin,ex

(
I − IMex

)
D

]
, (13)

[
IMinCin,ex IMex

]
. (14)

Dependent on the connection topology of the circuit, the first matrix can be dense, but the
last three will generally be sparse. Furthermore, these matrices can be calculated in advance.
Hence, in a time-domain simulation, integration of Eq. (9) can be done by updating only
s′ext instead of sext . Advantageously, s′ext will be more sparse, and additionally, the output
signals at the resonators do not need to be tracked anymore, as their influence on the inputs
of other non-resonator MC components is incorporated by the matrix product with a in Eq.
(10). Similarly, in circuits with a lot of resonators and sources, s′in,MC is a lot sparser than
sin,MC .

In principle, by incorporating additional stochastic contributions to emulate vacuumfluctu-
ations in the source terms, our framework can be extended towards semiclassical simulations
of large quantum optical circuits. Indeed, the previous equations can be conceptually mapped
to the deterministic part of the stochastic differential equations that were proposed by Santori
et al. (2014).

4 Applicability of the extended framework

Importantly, the previous derivation considered general circuits, that can contain other com-
ponents than sources, detectors and resonators. Hence, components such as waveguides with
delay or optical amplifiers can still be part of the circuit, making this extended framework
very flexible.

Interestingly, the replacement of Cin,ex in Eq. (1) with its equivalent in Eq. (14) already
offers a speed improvement in circuits without resonators, but with a significant number of
detectors and sources. In this case, the matrices in Eq. (11)–(13) are dimensionless (i.e., the
number of rows and/or columns is equal to zero) and, hence, do not slow down the calculation.

However, if we now consider circuits with a significant number of resonators, the speed
gain depends both on the circuit topology and the cavity type.

In Fig. 1, we investigate the dependence of the simulation speed on the topology using two
circuits with a significant number of resonators. In Fig. 1a, similar to Maes et al. (2009), we
simulate chains of lossless inline Kerr-nonlinear PhC cavities. These inline cavities have a
single standing wave mode and at resonance all light is transmitted, while far from resonance
all light is reflected. For large chains, using the extended framework results in a ∼ 25%-
reduction in the number of non-zero elements in the matrix products. As a large part of the
simulation time is spent in the calculation of these matrix products, this results in a significant
decrease of the total simulation time. In Fig. 1b we simulate the large nanophotonic reservoir
of PhCcavities proposedbyFiers et al. (2014). In this case, the relative reduction in calculation
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(a) (b)

Fig. 1 (left) In a long chain of N inline PhC cavities, incorporation of the CMT formalism improves the
simulation speed, due to a reduction of 4N + 2 non-zero elements to 3N in the circuit matrix description.
(right) A similar improvement can be seen in a simulation of a nanophotonic reservoir of inline PhC cavities
in the same topology as discussed by Fiers et al. (2011, 2014). Similar to Fiers et al. (2011), a fixed integration
stepsize of 0.1 ps is chosen and the input signals in both simulations are 10 ns long noise signals

time is even stronger. This is mainly due to the large number of sources and detectors in this
nanophotonic reservoir, which brings along a lot of unnecessary calculations per time step in
the original framework (e.g., propagating nonexistent output signals of the detectors to the
sources).

In Fig. 2, we illustrate the influence of the cavity type on the simulation speed, by repeating
the simulation performed in Fig. 1a, for two different cavity types: a unidirectional ring
(we use a CMT-model of a ring, in which only one the two counterpropagating modes is
explicitly incorporated) and a side-coupled PhC cavity (at resonance all light is reflected,
far from resonance all light is transmitted). Clearly, the extended framework identifies the
unidirectional nature of the ring-model and automatically reduces the number of non-zero
matrix elements by 50%. Unfortunately, whereas the scatter matrix - which models the off-
resonance behavior—of an inline PhC cavity only directly couples nearest neighbor cavities,

(a) (b)

Fig. 2 Not only the circuit topology, but also the cavity type significantly influences the improvement of the
simulation speed. In a chain of unidirectional Kerr-nonlinear rings, the extended framework automatically
reduces the number of non-zero elements by 50% (left). In contrast, such a significant reduction can not be
perceived for side-coupled PhC cavities (right). Simulation settings are similar to Fig. 1a
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in the case of the side-coupled PhC chain, all the cavities of the chain are directly coupled to
each other by their scatter-matrix. Consequently, this non-sparse coupling causes the matrix
in Eq. (11) to be non-sparse as well, such that the extended framework only results in a
negligible decrease in simulation time. Theoretically, for some resonator circuits, the CMT-
approach can even result in less sparse circuit matrices, thereby increasing the simulation
time. In these cases, this speed reduction can be mitigated by excluding the problematic
resonators in the circuit (eg., having more states than ports and non-sparse KT

i and Di ) out
of the resonator list that is used to construct D, KT , IMin and IMex .

Finally, the extended framework also allows to analyse the CMT-resonances in the fre-
quency domain. Indeed, the linear steady-state transmission of the circuit can be calculated
by assuming N(a, t, . . .) = 0 and solving da

dt = 0 in Eq. (9).

5 Conclusion

By taking benefit of the linear part in the CMT-equations of optical resonators, the node-based
framework proposed by Fiers et al. (2011) can be optimized for the simulation of large-scale
resonator-circuits. Due to the use of sparse matrices, this results for some circuit topologies
and cavity types in a significant speed increase.
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