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Abstract– Reservoir computing is a decade old 

framework from the field of machine learning to use and 

train recurrent neural networks and it splits the network in 

a reservoir that does the computation and a simple readout 

function. This technique has been among the state-of-the-

art for a broad class of classification and recognition 

problems such as time series prediction, speech 

recognition and robot control. However, so far 

implementations have been mainly software based, while a 

hardware implementation offers the promise of being low-

power and fast. Despite essential differences between 

classical software implementation and a network of 

semiconductor optical amplifiers, we will show that 

photonic reservoirs can achieve an even better 

performance on a benchmark isolated digit recognition 

task, if the interconnection delay is optimized and the 

phase can be controlled. In this paper we will discuss the 

essential parameters needed to create an optimal photonic 

reservoir designed for a certain task.  This design can lead 

to an efficient implementation of a photonic reservoir on a 

nanophotonic chip. 

 

1. Introduction 

 

Reservoir Computing (RC) is a training concept for 

Recurrent Neural Networks (RNNs), introduced a decade 

ago [1][2]. It comes from the field of machine learning 

where systems are trained based on examples, instead of 

programmed with algorithms. In RC a randomly 

initialized RNN, called the reservoir, is used and left 

untrained. The states of all the nodes of the RNN are then 

fed into a linear readout, which can then be trained with 

simple and well established methods. Usually, a mere 

linear regression is used. Hence, the difficulties of training 

a recurrent network, such as slow convergence, are 

avoided as only the readout is changed. Reservoir 

computing equals or outperforms other state-of-the-art 

techniques for several complex machine learning tasks. 

An example is the prediction of the Mackey-Glass chaotic 

time series several of orders of magnitude better than 

classic methods [1]. Although the reservoir itself remains 

untrained, its performance depends drastically on its 

dynamical regime, determined by the gain and loss in the 

network. Optimal performance is usually obtained near 

the edge of stability, i.e., the region in between stable and 

unstable or chaotic behavior. Hence, to obtain good 

performance, we need to be able to tune a reservoir's 

dynamic regime to this edge-of-stability.  

 

A common measure for the dynamic regime is the 

spectral radius, the largest eigenvalue of the system's 

Jacobian, calculated at its maximal gain state (for classical 

hyperbolic tangent reservoirs, this corresponds to the 

largest eigenvalue of the network's interconnection weight 

matrix). The spectral radius is an indication of the stability 

of the network. If its value is larger than unity, the 

network might become unstable. Tuning the spectral 

radius close to unity often yields reservoirs with close to 

optimal performance. 

 

2. Photonic Reservoir Computing 

 

Most reported results on reservoir computing use a 

(randomized) network of hyperbolic tangent or spiking 

neurons and most have been software based; hence the 

pursuit of finding a suitable hardware platform for 

performing the reservoir calculation. This transition offers 

the potential for huge power consumption savings and 

speed enhancement. Photonics is an interesting candidate 

technology for building reservoirs, because it offers a 

range of different nonlinear interactions working on 

different timescales. Semiconductor Optical Amplfiers 

(SOAs), with a saturation of gain and output power, are 

the optical device closest to the hyperbolic tangent 

functions used in many RC implementations. This is the 

reason we chose them as a first medium to verify the 

usefulness of photonic reservoirs. The SOA model we 

used is one proposed by Agrawal [3]. It captures the most 
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important features such as gain saturation, carrier lifetime 

and phase shift depending on the gain. 

3. Speech recognition 

 

Speech recognition is a very difficult problem to solve but 

reservoir computing with classical neural networks has 

been employed successfully for speech recognition [4]. 

The task used in this paper is the discrimination between 

spoken digits, the words ’zero’ to ’nine’, uttered by 5 

female speakers.  

 

The dataset and the simulation framework for classical 

reservoirs are publicly available 

(http://snn.elis.ugent.be/rctoolbox). As is standard for 

speech recognition, some pre-processing of the raw 

speech signal is performed before it is fed into the 

reservoir. We used the Lyon ear model which is based on 

the cochlea and highlights certain frequencies typical for 

our ear [5].  

 

We added babble noise from the NOISEX database, with 

a Signal-to-Noise Ratio (SNR) of 3 dB 

(http://spib.rice.edu/spib/selectnoise.html) to increase the 

complexity of the task. The performance is measured with 

the Word Error Rate (WER), which is the ratio of 

incorrect classified samples and the total number of 

samples. 

 

4. Delay and coherence 

 

In our experiments the input consists of 77 channels, 

coming out of the Lyon model. With such high-

dimensional input, the number of nodes needs to be 

sufficiently large. Therefore all the experiments were done 

with a network of 81 (9×9) nodes in a swirl topology 

(Figure 1). All the connections are nearest neighbor 

connections and this topology can be easily enlarged, 

while keeping the length of all connections equal.  

 

 
 

 
Fig. 1. The swirl topology used in our simulations, here shown in a 4 × 4 

configuration 

 

In the experiments we always swept two variables: the 

phase change and attenuation in every connection. The 

attenuation influences the spectral radius as it affects the 

total loss in the reservoir. Because we work with complex 

amplitudes and to incorporate the influence of coherence, 

the spectral radius has to be calculated from the complex 

interconnection matrix, also including the gain in the 

SOAs. An example of such a sweep can be seen in Figure 

2.  

 

 
 
Fig. 2. WER for swirl SOA reservoirs with coherent light and a delay of 

6.25 ps where the spectral radius is changed through the attenuation in 
all the connections. Here, phase is a more critical parameter than spectral 

radius, as good performance is only found for a narrow band in phase 

space. 

 

In this case the interconnection delay was very short (6.25 

ps) and the performance very phase sensitive. When we 

change a design parameter, e.g. the delay in the 

interconnections, such a sweep is done for all the values 

of that parameter. When we take the best value for every 

sweep, we can summarize the results as in Figure 3. It 

shows that there exists an optimal delay in the network. 

 

In a previous paper we have shown that despite several 

differences between photonic and classical reservoirs 

(e.g., topology constraints, complex-valued signals and 

interconnection delays), the use of coherent light in a 

well-tuned SOA reservoir architecture offers significant 

performance benefits [6]. The most important design 

parameters are the delay and the phase shift in the 

system’s physical connections and with optimized values 

for these parameters, coherent SOA reservoirs can achieve 

better results than traditional simulated tanh reservoirs. 

For longer delays the results become also less phase 

sensitive. 

 

5. Delay and signal speed 

 

Reservoir memory is related to the typical time scales of 

the reservoir itself. Therefore, to achieve optimal memory 

in a reservoir, the relevant time scales of the input signals 

must be adapted to those of the physical reservoir 

implementation. Audio signals are rather slow, so we 

accelerated them to accord with timescales typical for the 

- 507 -



   

 

delays in a network of SOAs (duration of one digit then 

became in the order of a few hundred ps). 

 

It is, however, interesting to know whether our delay 

results depend completely on the speech signal itself. In 

that case we expect the optimal delay to shift according to 

the input signal speed. This is actually what happens as 

can be seen in Figure 3 where the optimal results in 

function of the interconnection delay are shown for rates 

two times slower and two times faster than our previous 

experiments. The (a) part shows that, as the speed 

increases or decreases, the optimal delay shifts just as 

much. In (b) we have rescaled the X-axis for the different 

curves the same way as their input speed, so their X-axes 

all match that of the original one (solid curve–triangles). 

Here the similarity between the three graphs implies that 

the optimal delay is indeed a feature of the audio signals 

themselves as it shifts according to the input rate.  

 

This also means that, confronted with a hardware 

implementation of a photonic reservoir with certain 

delays, we can change the input rate to match the delays. 

For slower signals there is no reason why this should 

break down, but there are practical limitations to delay 

lengths on a chip since losses increase with length and 

they consume area, although recently advances have been 

made on the Silicon-on-Insulator platform [7]. For ever 

faster signals at some point the delay in the SOAs will 

start dominating the interconnection delays. 

 

 
 
Fig. 3. (a) Results for different speeds of the input signals fed into a 
coherent swirl SOA reservoir, (b) the same results but plotted on top of 

each other by changing the X-axis of the different curves the same way 
as their input rate. 

 

5. Conclusions 

 

We have shown with an isolated digit recognition task that 

a network of SOAs can be used as a reservoir for reservoir 

computing and we identified delay as an important design 

parameter and showed that its value depends on the input 

speed of the speech signal. This means that for an existing 

hardware implementation that the input signal should be 

matched to the hardware delays or vice versa that those 

delays should be chosen carefully when a photonic 

hardware reservoir is designed for a specific task. 
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