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Recurrent neural networks are brain-inspired dynamical systems that can compute
cognitive tasks much more efficiently than traditional computing schemes. We study a
special class of recurrent networks called Reservoir Computers (RC). This work
demonstrates by means of simulations how an optical RC on chip can be made more
tractable in terms of signal requirements. In fact, the short delay lines on a chip require
a large analog bandwidth in order to achieve efficient computing. Using the example of
the speech recognition task, we show that a fast digital masking operation together with
additional feedback leads to a considerable decrease of the analog bandwidth
requirements.

Introduction

Reservoir Computing is a concept in machine learning and is related to the training of
recurrent (neural) networks. The latter are powerful tools inasmuch they combine the
classification/regression abilities of feed-forward networks in high-dimensional spaces
with the inherent memory and complex dynamics of recurrences. Unfortunately, it
appears that these recurrences make it very hard to train all the internal network weights
in an efficient manner. Here the concept of Reservoir Computing provides a clear-cut
solution to this issue. Indeed, a linear combination of all the state variables associated
with the network nodes allows for the application of a standard ridge regression
algorithm in the read-out layer and makes it well-suited for possible experimental,
online learning implementations. This was first proposed in the pioneering papers by H.
Jaeger and W. Maass [1,2,3]. Much work has been devoted to the study of RC since
then, leading to its successful application in financial forecasting and robotic navigation
control [4,5]. Techniques like the linear and non linear memory function have been
developed to understand what tasks a RC can compute efficiently [6,7].

Recently some groups successfully set up some opto-clectronic or fibred delayed
feedback hardware implementations of Reservoir Computers [8,9,10]. Striving towards
photonic integration implies, on the one hand, an all-optical operating regime of the RC,
with increased bandwidth for high-speed applications. On the other hand, one has to
cope with the very short, on-chip delay lines, which need, in order to memorise and
process information in the context of RC, a very high signal input rate. This is an
important issue with respect to analogue signals like speech, because arbitrary waveform
generators are limited in bandwidth and costly. That is why our simulations aim to
reduce these requirements on the analogue signal bandwidth by performing a faster,
digital masking procedure on the input signal and adding self-loops to the reservoir
nodes.
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Simulation of the Reservoir

For our simulations, we chose a network where a semiconductor optical amplifier is
sitting on each node (cf. figure 1). The topology, usually a random digraph, is set to
“swirl” which is better suited for on-chip routing. K. Vandoorne et al. [11] showed that
this optical reservoir achieves good scores for a spoken digit speech recognition task.
According to previous experiments [7,8,9] , a single non linear node with delayed
feedback can be considered as a reservoir computer if it is subject to input masking,. The
masking procedure creates a periodic sequence of constant input time windows, called
virtual neurons, each associated to a
random weight factor. On a conceptual
level we can think of virtual neurons as
the subsequent, time-multiplexed input
samples, keeping the node dynamics in
a transient regime. Ridge regression
then combines the virtual neurons into
one or more output nodes.

Based on this observation, we added
self-loops to each node (elliptical thin
lines, cf. figure 1), on top of all the
existing connections in the swirl
network (black arrows). The length of
the loop is equal for all the nodes and

Figure 1: A 4x4 recurrent “swirl” network of non linear an integer multiple of the internodal
nodes (SOAs in gray, hatched). Interconnections e8 R

(typically spiraled waveguides) are shown as arrows or distance, so as to store an integer
arcs (self-loops). number of virtual neurons in every

loop. It is expected that this network
consisting of single non linear nodes with delayed feedback outperforms both the single
node reservoir and the multiple node swirl reservoir as mentioned in the paper of K.
Vandoorne et alii [11].

Table 1: Listing of typical simulation parameters and their corresponding values.

Simulation Parameter Value

Number of network nodes 81

Semiconductor injection current, delay 187 mA, 6.25 ps

Delay between nodes/ virtual node time window 187 ps

Interconnection weights 0.25 exp(n/4)

Number of virtual nodes 3-5 (self-loops with delay 3-5-187 ps)
Integration time step 6.25ps

Input dimensions (speech channels) 77

Approximate speech signal duration (after speed- 100 ns

up)

We list the most important simulation parameters in table 1. They correspond to the
optimum values found for the speech recognition task in aforementioned reference [11].
For convenience this paper reports on the spoken digit task (without babble noise) [12],
too. Keeping the semiconductor optical amplifier network related parameters fixed, we
concentrate on a sweep of both phase and attenuation in the self-loops at different input
peak power levels. In a second time, the effect of changing the period of the input mask
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or the internodal distance was investigated. It is worth noting that we simulated only a
few virtual nodes in each self-loop due to the limited space of delay lines on chip.
Moreover the same input masking was used for every node. Finally we note that the
network was simulated with an in-house circuit simulator [13].

Results for the Spoken Digit Task

Figure 2 shows four different operational regimes with respect to peak input power. At
low input powers, corresponding to a linear regime, the optimal word error rate, that is
the average number of misclassified digits, is very localised around 90° phase shift in
the self-loops. That proves that an optical network exhibiting phase control can boost
the overall RC performance. Remarkably, the optimal peak power is around 100 mW;
higher input peak powers showing only little change in performance. Consequently,
there exists at least one optical amplifier within the network that operates in a strongly
saturated regime. Interestingly, we exploit optical non linearity to obtain this result. The
best error rate is 11% which is one order of magnitude higher than the result obtained by
K. Vandoome et alii (WER of 0.6%, with relabeling of unbalanced dataset) for the same
network size (9x9 nodes).
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Figure 2: Word error rate for the spoken digit task Figure 3: Word error rate for the spoken digit

in the (attenuation, phase) plane for different input task in the (attenuation, phase) plane at 100 mW

peak powers. All the self-loops contain 5 virtual input peak power and different numbers of virtual

neurons. nodes in the self-loops. In d) the masking period
is detuned by one virtual neuron step.

This result is disappointing in view of the poor performance, although encouraging with
respect to the analogue signal bandwidth which is decreased by a factor of five (when
using five virtual nodes). Figure 3 confirms the trend that fewer virtual nodes, e.g. three
(WER 7%), rather improve the performance of the reservoir, converging most likely to
its best value when the self-loops are completely absent (WER 5.8% without
relabeling). According to figure 3, the performance decreases if one applies the input
signal to only one node instead of projecting it onto all of them. Five times longer
internodal connections lower the error rate to 5% on the cost of increased waveguide
losses and poor phase coherence. In addition, the same performance can be achieved
with a five times lower analogue signal in a self-loop-free network possessing five times
longer node interconnections.

Yet another interesting feature of figure 3 is the fact that detuning the masking period by
a time corresponding to one “virtual node window”, the performance is improved to a
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word error rate of 2%. Because of its additional mixing of virtual nodes, this detuning
indicates that the virtual node coupling is in general too weak. Therefore future
simulations should focus on the case of shorter virtual neurons which mix stronger
under the optical semiconductors’ non linearity.

Conclusion

We showed by means of software simulation that a five times lower analogue signal
bandwidth is necessary given that a periodic binary masking procedure is applied to the
reservoir. The achieved word error rate, however, is increased by one order of
magnitude compared to state-of-the-art studies. In this respect, this work is rather a
proof of principle and further studies will address the question of decreased
performance. First evidence is found that suggests the use of stronger correlated virtual
nodes by reducing their time window to values typical of the intrinsic semiconductor
timescale. The best word error rate documented in this work amounts to 2% using
detuning of the masking period with respect to the number of virtual nodes.
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