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ABSTRACT 
We present a complex network of interconnected optical structures for information processing. This network is 
an implementation of reservoir computing, a novel method in the field of machine learning. Reservoir computing 
can be used for example in classification problems such as speech and image recognition, or for the generation of 
arbitrary patterns, tasks which are usually very hard to generalize. A nanophotonic reservoir can be constructed 
to perform optical signal processing. Previously, simulations demonstrated that a reservoir consisting of 
Semiconductor Optical Amplifiers (SOA) can outperform traditional software-based reservoirs for a speech task. 

Here we propose a network of coupled photonic crystal cavities. Because of the resonating behaviour, a lot of 
power is stored in the cavity, which gives rise to interesting nonlinear effects. Simulations are done using a novel 
software tool developed at Ghent University, called Caphe. We train this network of coupled resonators to 
generate a periodic pattern using a technique called FORCE. It is shown that photonic reservoirs can outperform 
classical software-based reservoirs on a pattern generation task. 
Keywords: nanophotonic reservoir computing, photonic crystal cavities, nonlinear dynamics, coupled 

resonators, pattern generation 

1. INTRODUCTION 

Machine learning is an information processing paradigm often used in cases where it is difficult to generalize 
input-output relations, for example in classification problems such as speech and image recognition, or for the 
generation of patterns. A recently proposed methodology in this field is reservoir computing [1]-[2], which has 
the advantage that the readout mechanism is very simple to train. Until now, they have been used mainly in 
a software implementation, i.e. the neurons are modelled in software. These are however limited in speed and 
power efficiency. Nanophotonic reservoir computing provides an excellent platform for a hardware 
implementation: First because of the presence of unique nonlinear effects that enrich the dynamics of the system. 
Second, because the signals have a phase in addition to the amplitude, which add additional degrees of freedom 
as opposed to purely electronic hardware implementations and third, the very high speeds achievable in optics is 
an important advantage over electronic reservoirs. 

One of the previously proposed photonic implementations employs Semiconductor Optical Amplifiers (SOA) 
as the basic building blocks for the reservoir. It is shown using simulations that they can outperform traditional 
software-based hyperbolic tangent reservoirs for a speech task[3].  

Here we propose a network of coupled photonic crystal cavities to generate a coherent pattern using 
a technique called FORCE[4]. Because of the resonating behaviour, a lot of power is stored in the cavity, which 
gives rise to interesting nonlinear effects such as the Kerr-effect, free carriers and temperature. When coupling 
two or more resonators, the Kerr-effect gives rise to self-pulsation and chaos[5]. 

Simulations are done using a novel software tool developed at Ghent University, called Caphe[6]. Using the 
same tool, spiking neurons are investigated. These are usually more difficult to model in software (in terms of 
speed and stability), but spiking neural networks have more realistic properties compared to analog neural 
networks. In this paper, first we give a brief introduction of reservoir computing, and show how we can train 
a reservoir to generate periodic patterns using the technique called FORCE. Then we explain how we construct 
the optical reservoir, and explain what the restrictions are concerning the topology. After this, we compare the 
discrete tangent hyperbolic reservoir with the optical reservoir by generating a sum of sine waves. This problem 
is called the Multiple Superimposed Oscillator (MSO) task. 
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2. RESERVOIR COMPUTING 

2.1 Basic principle 

There are different types of reservoirs. The two most commonly used types are the echo state networks (ESNs 
[1]) and liquid state machines (LSM[2]). The first one mostly resembles our architecture, and was originally 
formulated in discrete time through the reservoir state update function: 

ݐሾܠ  ൅ ሿݐ∆ ൌ ሺ1 െ ሿݐሾܠሻߣ ൅ ߣ ሿݐሾܝ௜௡ࢃሺ܎ ൅   ሿሻ (1)ݐሾܠ௥௘௦ࢃ

Here, ܠሾݐሿ are the states of the reservoir (size N) and ܝሾݐሿ is the input of the reservoirat time step t. ࢃ௜௡ is the 
weight matrix for all the connections from the reservoir to the reservoir (size N x N), ࢃ௥௘௦is the weight matrix 
for the connections from the input to the reservoir, and ܎ሺܠሻis the neuron function. Typically, this is a sigmoid 
function (e.g. the hyperbolic tangent function, tanh).The parameter λ is called the leak rate of the network. This 
effectively adds a first-order low-pass filter to each neuron. When λ = 1, the previous state is just discarded. The 
closer λ is to zero, the more each neuron remembers its previous state. Especially in temporal tasks (such as 
pattern generation), it is important to have sufficient memory. 

In reservoir computing, the ࢃ௜௡ matrix is typically chosen random, e.g. sampled from a uniform distribution 
between [-1..1]. The ࢃ௥௘௦ matrix is also chosen randomly, but then rescaled so that the network is on the edge of 
chaos. Tuning the reservoir close towards the edge of chaos has been found to give optimal results for many 
tasks. The task of the reservoir is to transform the input signal ܝሾݐሿ to a higher-dimensional space, where it is 
easier to extract features which are present in the input signal. Finally, the output of the reservoir is calculated 
using a linear readout function: 

ሿݐሾܢ  ൌ   ሿ (2)ݐሾܠ௢௨௧ࢃ

The training is done by first feeding all input ܝሾݐሿ to the network. Afterwards, the reservoir computing system is 
trained by adjusting the weights ࢃ௢௨௧. Typically this is solved using linear regression. A commonly used 
scheme for solving this problem is ridge regression. Suppose the target outputs are given by the matrix ࡮, then ࢃ௢௨௧ is given by: 

௢௨௧ࢃ  ൌ ሺ࡭்࡭ ൅   (3) ࡮்࡭ሻିଵࡵߛ

Where γ is a regularization constant, which is optimized using so-called cross-validation.  

2.2 Generating periodic patterns using FORCE 

FORCE stands for First Order Reduced and Corrected Error[4]. It is an on-line learning rule, which means the 
output signal is fed back to the input and weights are modified during the simulation. This is in contrast to off-
line learning rules, where the output weights are trained after feeding all input to the network (see section 2.1). 
There are different ways to modify the readout weights. One of the most commonly used mechanisms is using 
the recursive least squares (RLS) rule(in the remainder of this paper, we use only one scalar output, so z[t] is 
scalar and ܟ௢௨௧ and ܟ௜௡ are vectors): 

 
Figure 1. Principle of FORCE: The output of the reservoir is fed back to the input. During training, the output 

weights ࢝௢௨௧ሾݐሿ are modified using the RLS rule which is described below. 

First we calculate the error between the output signal ݖሾݐሿ and the target signal ݏሾݐሿ: ݁ሾݐሿ ൌ ሿݐሾݖ	 െ  ሿ. We thenݐሾݏ
define the matrix ࡼas the running estimate of the inverse of the correlation matrix of the network states, plus 

a regularization term. Its initial value equals ࡼ଴ ൌ 	 ଵఈ  ሺܰ,ܰሻ, whereα acts as a learning rate. Smaller values of αࡵ

mean faster learning, but the weight changes can be so rapid that the algorithm becomes unstable. Also, for 
smaller α, the norm of the weights are typically larger, which is not always wanted. The matrix ࡼis updated by 
the following equations: 

ሿݐሾܓ  ൌ ݐሺࡼ െ   ሿ (4)ݐሾܠሻݐ∆
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 ܿ ൌ 11 ൅ ܠ ࡼ   (5) ܠ

 											 ሿݐሾࡼ ൌ ݐሺࡼ െ ሻݐ∆ െ .ܓ ሺ்ܿܓሻ (6)  

Finally, the output weights are adjusted using the following equation: 

ሿݐ௢௨௧ሾܟ  ൌ ݐ௢௨௧ሾܟ െ ሿݐ∆ െ ݁ሾݐሿ(7) ்ܿܓ  

The weights ܟ௢௨௧ are changing in time. If the algorithm converges, the norm of ܟ௢௨௧ also converges to a fixed 
value and the system is on a stable attractor. It is important that this norm does not grow too big: large output 
weights are an indication that the training is over-fitting, which reduces the robustness of the system (for 
example, when perturbing the output signal the system might jump to another attractor or even become chaotic).  

3. PHOTONIC RESERVOIR COMPUTING 

To construct a photonic reservoir, we use photonic crystal cavities fabricated using SOI technology[10]. We 
model these devices using coupled mode theory. The basic equations describing one cavity are the following: 

 
݀ ௝ܽ݀ݐ ൌ 	 ቈ݅൫߱଴ ൅ ߜ ௝߱൯ െ 1߬௝቉ ௝ܽ ൅ ௝,௟,௜௡ݏ݀ ൅  ௝,௥,௜௡ݏ݀

(8)  

௝,௟,௢௨௧ݏ  ൌ ݁௜ఝݏ௝,௟,௜௡ ൅ ݀ ௝ܽ (9)  

௝,௥,௢௨௧ݏ  ൌ ݁௜ఝݏ௝,௥,௜௡ ൅ ݀ ௝ܽ (10)  
Where | ௝ܽ|ଶ represents the energy in the mode of cavity j.  ݏ௝,௟,௜௡ is the input signal on cavity j from left, ݏ௝,௥,௜௡ the 
input from right. The term ݁௜ఝ is the reflection from the cavity. The nonlinearity is provided by the term ߜ ௝߱ ൌ െ| ௝ܽ|ଶ ଴ܲ߬ଶ⁄ , where ଴ܲ is the characteristic nonlinear power of the cavity [9].Typically ଴ܲ can be brought 

below 77 mW[5].The cavity has a lifetime of ߬ ൌ 1.39 ps, ߮ ൌ and ߱଴ ߨ0.2 ൌ 1.55	μm. These cavities are then 
connected using an appropriate topology and simulated with Caphe, a circuit simulation tool developed at Ghent 
University [6]. 

In a hardware implementation, there are several restrictions w.r.t. the topology. The technology used here is 
Silicon On Insulator (SOI). This means all components are on one chip, which reduces the footprint drastically 
compared to bulk photonics. The structure is planar, and too many optical crossings should be avoided because 
they add a loss term (approximately 0.17 dB per crossing[8]). Another important consideration is the fan-out. 
The output power of one cavity needs to be divided over the different output ports, and this power drops quickly 
with increasing fan-out. To keep the input powers about the same order of magnitude, the fan-out should be 
minimized. Due to reciprocity, the same holds for fan-in: If only one input to a cavity would be activated, still 
the power that arrives at the cavity is only a fraction of this input power. After taking these restrictions into 
consideration, we propose the waterfall topology, as displayed in Fig. 2. 

 
Figure 2. Topology of the photonic reservoir: To avoid optical crossings and to minimize fan-in and fan-out, 

each photonic crystal cavity (represented by a circle) is connected to its closest neighbours 
in a ‘waterfall’ topology.  

4. RESULTS 

The quality of the reservoir is measured by the ability of the reservoir to follow a target signal ݏሾݐሿ after training 
this reservoir. A standard benchmarking task in the RC world is the Multiple Superimposed Oscillator (MSO) 
task. The target signal is given by a sum of two sine waves with different frequencies: 

ሿݐሾݏ  ൌ sinሺ߱ଵݐሻ ൅ sinሺ߱ଶݐሻ (11)  
For a discrete reservoir, ߱ଵ ൌ 0.2 and ߱ଶ ൌ 0.311.  
The performance is measured by the normalized root mean square error (NRMSE) between s[t] and z[t]. The 
period of the first oscillation is ଵܶ ൌ ߨ2 ߱ଵ ≅ 31,4	s⁄ . First there is a warm-up (noise input) of 15. ଵܶ, then the 
reservoir is trained for 400. ଵܶ, then it is left in freerun (ܟ௢௨௧ fixed) for 2000. ଵܶ. Then we take the last 100. ଵܶ 
samples, and move them over the first 1000. ଵܶ timesteps of the freerun phase, each time calculating the 
NRMSE. The lowest value in this list of errors is the resulting NRMSE. The system should not diverge from the 
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attractor and for that reason we simulate a large amount of periods (2000. ଵܶ). When a system is unstable, the 
calculated NRMSE is very high. By sweeping the last 100. ଵܶ over a large window, frequency drifts are not 
taken into account. For that we would need another performance measure. The reservoir size is 200, the learning 
rate ߙ ൌ 0.01 and the feedback strength is 1. Fig. 3 shows the simulation results for a discrete reservoir (left) and 
for an optical reservoir (right). 

     
Figure 3. Normalized root mean square error (NRMSE) between the output of the reservoir ݖሾݐሿ and the target 
signal	ݏሾݐሿ. Left: Simulation of a standard tangent hyperbolic reservoir for different leak rates (߬଴ ൌ 1 ⁄ߣ ). 
Right: Simulation of a photonic reservoir for different input fractions. Two types of readout layers were used: 
real/imaginary output (full line), only power output (dashed). All simulations were performed 50 times with 
different initial conditions, and the error bars indicate the standard deviation of the result.  

For the discrete reservoir, the spectral radius (defined as the absolute value of the largest eigenvalue of the 
connection matrix	ࢃ௥௘௦) is 1.5. We sweep the inverse of the leak rate ߬଴ ൌ 1 ⁄ߣ . The best NRMSE (averaged 
over 50 samples) is 0.0515 for߬଴ ൌ 4.5.  

For the optical reservoir, we first looked for the optimal signal frequency. This turned out to be 
approximately ߱ଵ ൌ 0.3 ∗ ߨ2 ߬⁄  (where ߬ is the cavity lifetime). We sweep the fraction of cavities that receives 
an input bias ( ௕ܲ௜௔௦ ൌ 1.30	 ଴ܲ). For this input power, a series of two coupled resonators self-pulsate [5]. When 
too many bias input is provided to the reservoir (above 70%), the reservoir fails to generate the requested 
periodic pattern. The best NRMSE is found to be approximately 0.0387 for an input fraction of 20%. This proves 
that optical reservoirs can be used to generate periodic patterns, and the performance for the MSO task is better 
than for the typical tangent hyperbolic reservoir. 

5. CONCLUSIONS 

We investigated a new type of hardware implementation for reservoir computing using photonic crystal cavities. 
The simulation results show that the optical reservoir performs better than a standard leaky-tank reservoir with 
optimized parameters for the MSO task. Future research will focus on the experimental readout and feedback 
mechanism, and on analyzing the variability between the individually fabricated photonic crystal cavities. 
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