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Abstract: Numerical simulations have shown the existence of transversely
localized guided modes in nonlinear two-dimensional photonic crystals.
These soliton-like Bloch waves induce their own waveguide in a photonic
crystal without the presence of a linear defect. By applying a Green’s
function method which is limited to within a strip perpendicular to the
propagation direction, we are able to describe these Bloch modes by a
nonlinear lattice model that includes the long-range site-to-site interaction
between the scattered fields and the non-local nonlinear response of the
photonic crystal. The advantages of this semi-analytical approach are
discussed and a comparison with a rigorous numerical analysis is given in
different configurations. Both monoatomic and diatomic nonlinear photonic
crystals are considered.
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1. Introduction

Photonic crystals are artificial materials consisting of a periodic dielectric structure, designed to
engineer the characteristics of the light propagating within [1]. They have received quite some
interest. On the other hand, nonlinear optical systems promise many interesting all-optical sig-
nal and processing applications [2]. When a nonlinearity is included into the photonic crystal
structure, the possibility of trulymolding light with light opens up. The most considered non-
linear effect is the Kerr effect. Using this nonlinearity, the propagation of modes can be changed
by tuning the band-gap dynamically [3, 4, 5]. Moreover, there also other effects to be studied
such as the appearance of localized nonlinear modes and gap solitons [6, 7, 8, 9, 10, 11, 12, 13].

Photonic crystals embedded with nonlinear material are an ideal environment to generate and
to observe nonlinear localized modes. In [11], Mingaleevet al. consider waveguides created
by an array of dielectric rods introduced into an otherwise perfect two-dimensional photonic
crystal. In this work, it is assumed that the dielectric constant of the waveguide rods depends on
the field intensity due to the nonlinear Kerr effect. Using a nonlinear lattice model, they are able
to demonstrate the existence of 2D spatially localized modes with a frequency in the band-gap.

Recently, in [14], some of us demonstrated numerically the existence of self-localized
waveguides in a two-dimensional photonic crystal consisting of a square lattice of Kerr-type
rods without linear defects. These self-localized waveguides are Bloch modes with frequency
in the band-gap. They are confined in the transverse direction due to the band-gap, but they are
able to propagate longitudinally as they induce a waveguide in the material by locally reducing
the refractive index. Because a self-localized waveguide overcomes the longitudinal band-gap,
it can be seen as a variant of the gap soliton [7, 9]. However, they can also be interpreted as a
kind of intrinsic localized mode [6, 8] such as discrete solitons in waveguide arrays [10, 12].

Our numerical method is based on a linear mode expansion method [15], where one chooses
a main propagation direction and then divides the structure in sections invariant along this direc-
tion. The field in one such invariant section can be described as a superposition of eigenmodes.
To combine the different sections the mode-matching technique is used. In this way, the fields
throughout the entire structure can be found by matrix manipulations. However, things get a bit
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more complicated when the Kerr nonlinearity is taken into account and the refractive index is
dependent on the local field intensity. The nonlinear material in the structure is then divided into
smaller sections using a spatial grid. Using the linear eigenmode expansion, the field intensity
can be found. Using this calculated field profile the local refractive index is updated. The new
field profile can be calculated and the refractive index brought up to date again. In this way, the
nonlinearity is taken into account iteratively [16]. Both on-site nonlinear guided soliton modes,
modes with a maximum centered on a nonlinear rod, and inter-site modes, have been reported
[14].

The properties of photonic crystals and photonic-crystal waveguides are usually studied by
numerical integration of Maxwell’s equation. Such calculations can be quite time-consuming
and do not always provide good physical insight. Mingaleevet al. show a novel conceptual
approach based on effective discrete equations including long-range interaction from site to
site, which has proven to be successful for photonic crystal waveguides [17], for nonlinear
localized modes [11] and for nonlinear waveguides [18]. The purpose of this work is to suggest
a similar semi-analytical approach to describe the properties of self-localized waveguides based
on a nonlinear lattice model. By exploiting the clear one dimensional periodicity of the Bloch
modes, it is possible to reduce the infinite two dimensional crystal to a strip of material which is
finite in the propagation direction and infinite in the orthogonal one. From the Green’s function
of the strip, it is possible to find a set of discrete equations which model the interaction between
the field centered at the rods of nonlinear material.

The paper is organized as follows. In Section II, we present the nonlinear photonic crystal
studied here and review the numerical results found in [14]. In Section III, we study a strip of
photonic crystal. This enables us to restrict our study to one-dimensional longitudinal Bloch
waves. In Section IV, we introduce effective discrete equations, which model the site-to-site
nonlinear interaction of the scattered fields. In Section V, we find the solutions of the nonlinear
lattice model and compare these semi-analytical results with the numerical ones found in [14].
Section VI contains conclusions.

2. The model and self-localized waveguides

The structure under consideration is a two-dimensional photonic crystal consisting of a square
lattice of parallel, infinitely long dielectric square rods in a homogeneous dielectric with lower
refractive index (in this case air). We assume that the rods are oriented along thez-axis. In this
sense, the dielectric permittivity can be written as a two-dimensional functionε(r) = ε(x,y).
The rods are arranged in a perfect square lattice with lattice constanta (ax = ax anday = ay).
The rods have a refractive index of 3.4 and the ratio of the side of the rods to the crystal period
is d/a = 0.25. The electric field is polarized parallel to the rods (TM-polarization) and prop-
agates in thexy-plane. The wave equation then simplifies to its scalar form. We only consider
monochromatic light,E(r) = E(r|ω)e−iωt , which reduces the wave equation to the well known
Helmholtz equation

[
∇ 2 + ε(r)

(ω
c

)2
]

E(r|ω) = 0. (1)

This eigenvalue problem can be solved in the case of a perfect linear photonic crystal with
permittivity ε(r) = εL(r), which is of course a periodic function

εL(r+ rax + say) = εL(r), (2)

with r ands arbitrary integers, andax anday are the lattice vectors of a primitive unit cell of
the photonic crystal.
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Fig. 1. The band-gap structure of the photonic crystal consisting of a square lattice of square
dielectric rods (n = 3.4) in an air background. The ratio of the side of the rods to the crystal
period isd/a = 0.25.
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Fig. 2. A gap soliton withω = 0.38(2πc/a) and kx = 0.7π/a propagating along thex-
direction.

In the linear case, the band structure of this configuration is shown in Fig. 1. The photonic
band-gap extends from the lower frequencyω = 0.35(2πc/a) to the higherω = 0.48(2πc/a).
Of course, if the frequency of the electric field lies within the band-gap, the field cannot prop-
agate through the structure and will be damped. But, as shown in [14], when the rods contain
a Kerr material, this nonlinearity can create guided modes within the band-gap. Such a spa-
tial guided soliton is the linear guided mode of the refractive index profile of the waveguide
it induces through the nonlinearity. The Kerr nonlinear refractive indexn2 has to be chosen
negative to induce the waveguide defect and to enable the self-localization to occur. In Fig. 2,
an example of such a gap soliton is shown. We have checked that gap solitons propagating in
the M-direction (along the structure diagonal) also exist for a negative Kerr index. However, in
the following we limit ourselves to propagation in the X-direction.
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3. A photonic crystal strip

The self-localized waveguides possess translational symmetry, and the corresponding guided
modes can be characterized by the reciprocal wavenumberkx. Also, such a guided mode has
a periodic profile along the waveguide, and it decays exponentially in the transverse direction.
Through the nonlinear interaction, the medium loses its periodicity in they-direction, while
retaining it in thex-direction. We will exploit this fact in the analysis.

We will investigate the periodic problem on a strip of the linear photonic crystal. The strip
is denoted by the material betweenx = [− a

2, a
2]. Let us consider the Bloch waveE(r|ωkx ,kx)

parameterized inkx. For eachkx ∈ [0,2π/a], this one-dimensional Bloch wave satisfies:[
∇ 2 + εL(r)

(ωkx

c

)2
]

E(r|ωkx ,kx) = 0. (3)

together with the Bloch conditionE(x+a,y|ωkx ,kx) = E(x,y|ωkx ,kx)eikxa. Of course, the orig-
inal dispersion relation and (two-dimensional) Bloch waves of the entire photonic crystal can
be recovered when the Bloch condition in the perpendicular direction is also introduced.

Instead of integrating Eq. (3) numerically, as was done in [14], we will follow a similar
approach as in [11, 17, 18] and transform the problem to its integral form using the strip’s
Green function. The strip’s Green’s function for a fixed(ωkx ,kx) was proposed in [19] and
satisfies: [

∇ 2 +
(ωkx

c

)2
εL(x)

]
g(r1,r2|ωkx ,kx) = − ∑

j∈Z

δ(r1 + jax − r2)ei jkxa, (4)

g(r1 +ax,r2|ωkx ,kx) = g(r1,r2|ωkx ,kx)eikxa (5)

with ωkx inside the band gap. The strip Green’s function is related to the whole-space Green’s
functionG, which is the Green’s function associated to the full two-dimensional photonic crys-
tal, through [19]

g(r1,r2|ωkx ,kx) = ∑
j∈Z

G(r1 + jax,r2|ω)ei jkxa. (6)

By folding the whole space Green’s function onto itself, we reduce our study to the modes
which can be considered as one-dimensional Bloch modes with the Bloch scalarkx. An example
of the Green’s function of the entire photonic crystal is given in Fig. 3(a). One can notice the
typical evanescent behavior of the Green’s function due to the band-gap. In Fig. 3(b), we show
the corresponding strip’s Green’s function. Note that the Green’s function of a perfect linear
two-dimensional photonic crystal is symmetric,G(r1,r2|ω) = G(r2,r1|ω), and also periodic,
G(r1 + rax + say,r2|ω) = G(r1,r2|ω). It is possible to show that the strip’s Green’s function is
periodic,g(r1 + rax + say,r2 + rax + say|ωkx ,kx) = g(r1,r2|ωkx ,kx).

4. Effective discrete equations

In this Section, we reintroduce the nonlinearity into the dielectric permittivity as an addition to
the linear dielectric constant:

ε(r) = εL(r)+ εNL(r). (7)

Let us reconsider the Helmholtz problem defined in the strip, where the eigenvalueωkx lies in
the band gap. The mode profileE(r|ωkx ,kx) satisfies[

∇ 2 +
(ωkx

c

)2
εL(r)

]
E(r|ωkx ,kx) = −

(ωkx

c

)2
εNL(r)E(r|ωkx ,kx). (8)
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(a) (b)

Fig. 3. (a) Photonic crystal geometry with Green’s function atω = 0.38(2πc/a) superim-
posed. (b) Strip Green’s function atωkx

= 0.38(2πc/a) andkx = 0.7π/a calculated using
Eq. (6). In both casesr2 = 0.

Using the theory of the Green’s function, it is possible to transform this partial differential
equation into an integral equation

E(r|ωkx ,kx) =
(ωkx

c

)2∫
strip

g(r,u|ωkx ,kx)εNL(u)E(u|ωkx ,kx)d2u. (9)

The nonlinearity is a natural part of the rods which make up the photonic crystal. The nonlinear
permittivity will therefore have a similar periodicity as the linear dielectric constant. We model
the nonlinearity as

εNL(r) = −δrod(r)|E(r|ωkx ,kx)|2, (10)

whereδrod is 1 inside the rods containing nonlinear material and zero outside. The negative sign
ensures that the local intensity reduces the refractive index of the rod, and as such, creates a
waveguide defect. The electric field is renormalized such thatn2 = 1. The size of the nonlinear
rods in the photonic crystal is assumed to be sufficiently small so that the electric field can be
considered constant inside the rods. We number a center rod as 0. The other rods in the strip
are then numbered with positive integers in the positivey-direction and negative in the negative
y-direction. An approximate discrete nonlinear equation for the electric field in rodn can be
written, when we insert Eq. (10) in Eq. (9) and by averaging over the rods

En(ωkx ,kx) = −∑
m

Jn,m(ωkx |kx)|Em(ωkx ,kx)|2Em(ωkx ,kx), (11)

whereJn,m, the coupling coefficient, describes the interaction between rodn andm. Due to the
symmetry and periodicity of the Green’s function and considering the symmetry of the photonic
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crystal strip, the coupling constant only depends on the distance between two rods, reducing
Jn,m = J|n−m|:

Jl(ωkx ,kx) =
(ωkx

c

)2∫
rod

g(r0,rl +u|ωkx ,kx)d2u, (12)

with rl denoting the center of rodl.
Summarizing the procedure: first of all one chooses the frequency of the nonlinear mode

to obtain the Green’s function. This frequency must lie in the range of the band-gap, because
in that case the Green’s function has an evanescent form (see Fig. 3(a)) and it is possible to
perform the folding procedure from Eq. (6). By choosing the Bloch parameterkx and reducing
the Green’s function to within the strip, we findg, the strip’s Green’s function (see Fig. 3(b)).
Averaging the strip’s Green’s function over a rod, delivers us the coupling parameters from Eq.
(12), that model the long-range nonlinear interaction between rods. The last step is of course
finding the solution of the nonlinear lattice model in Eq. (11). This system is a closed set of
nonlinear algebraic equations in the fields at the center of the rods carrying nonlinear mate-
rial. Techniques for calculating the Green’s function can be found in the literature. We have
calculated the Green’s functions using CAMFR (CAMFR simulation software is freely avail-
able fromhttp://camfr.sourceforge.net). The nonlinear system can be solved using an iterative
Newton-Raphson method.

The coupling parameters defined in Eq. (12) and a similar lattice model have also been pre-
sented in [11] for the case of nonlinear localized modes induced by an array of dielectric nonlin-
ear rods embedded in an otherwise perfect linear two-dimensional photonic crystal. Two impor-
tant differences between that approach and the procedure presented in this work exist. Firstly,
in our case every rod of the photonic crystal is nonlinear, while in [11] the nonlinear rods were
embedded into the photonic crystal. Secondly, the solutions of the lattice model presented here
will always be nonlinear guided modes which are only localized in the transversal direction,
while in the examples in [11] the longitudinal band-gap was not overcome. A related approach
to finding guided modes in linear waveguide defects have been presented in [17] and for linear
waveguides with embedded nonlinear defects in [18]. We have checked that the theory based
on the strip’s Green’s function can reproduce the results found on a linear waveguide defect as
presented in [17]. The major goal of the work presented in this paper is, like in [18]: to further
develop the nonlinear lattice model allowing the use of fast numerical techniques. In [18] a lin-
ear lattice model is used to approximate the linear modes (either propagating or evanescent) of
a linear waveguide and then construct the field traveling through embedded nonlinear defects
in this waveguide as a linear combination of these linear modes. In the next Section, we will
study several examples of nonlinear guided Bloch modes using the procedure presented here.

5. Examples of nonlinear guided Bloch modes

5.1. Self-localized waveguides

By solving the set of nonlinear effective discrete equations Eqs. (11) for a chosen set(ωkx ,kx)
by means of a Newton-Raphson algorithm, we can find the field amplitudes at the nonlinear rods
of the guided spatial soliton Bloch wave. In Fig. 4, we present the calculated mode profile and
the corresponding coupling parametersJn. These modes can be characterized by theirmodal
energy:

Q = ∑
m
|Em(ωkx ,kx)|2. (13)

The energy, as defined above, is not the total energy of the electric field, but is merely related to
it. It can, however, be used as a measure for the total energy. This energy is sufficient to create
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Fig. 4. Coupling parametersJn and electric field at the center of rodn for a self-localized
waveguide withωkx

= 0.38(2πc/a) andkx = 0.7(π/a)
.

a waveguide wherein a Bloch wave with frequencyωkx and Bloch numberkx can propagate. In
Fig. 5, we have plottedQ as a function of frequency for a constant Bloch number. As in [14], we
are able to obtain both symmetric (on-site) and anti-symmetric (inter-site) modes. These results
are compared with the more rigorous numerical simulations of self-induced waveguides of [14]
in Fig. 5. The overall qualitative agreement is good, although there is an underestimation of the
field on the central rod with the Green’s function approach. However, the semianalytical ap-
proach is able to explore a largerkx domain. The quantitative error can be reduced by replacing
the central nonlinear rod, by several smaller ones.

5.2. Diatomic photonic crystal

Now, we consider an alternative photonic crystal geometry, a diatomic crystal depicted in Fig.
6. It consists of two offset square lattices with rods of different size. The structure is able to
exhibit larger absolute band-gaps (overlapping gap for both polarizations), compared to the
normal square lattice [20]. This is because the reduction of symmetry can lead to the canceling
of degeneracies at band edges. We will consider the larger rods to be linear, so they impart
most of the linear scattering. On the other hand, we assume that the small rods have a positive
nonlinearity, so they may be able to induce nonlinear localization.

Because the nonlinear sections are smaller than in the previous section, we expect a bet-
ter agreement between the strip Green method and the rigorous calculations. All rods in the
photonic crystal have a refractive index of

√
12 (the background is air), and the diameters are,

respectively, 0.2a and 0.1a. This crystal has a TM bandgap betweenω = 0.389(2πc/a) and
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Fig. 5. Modal energyQ and modal electric field amplitudes of the self-localized waveguide
atωkx

= 0.38(2πc/a), calculated with strip’s Green theory (thin line) and exact simulations
(thick line), respectively. The field in the center of rod 0 (black), 1 (red), 2 (green) and 3
(blue) are shown.

(a) (b)

Fig. 6. (a) Diatomic photonic crystal geometry with Green’s function atω = 0.4(2πc/a)
superimposed. (b) Strip Green’s function atωkx

= 0.4(2πc/a) andkx = 0.85π/a.
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Fig. 7. Modal energyQ for the diatomic photonic crystal atωkx
= 0.4(2πc/a), calculated

with strip’s Green theory (thin line) and exact simulations (thick line), respectively.

Fig. 8. A propagating diatomic gap soliton withωkx
= 0.4(2πc/a) andkx = 0.908π/a.

0.436(2πc/a). An example of the Green’s and strip Green’s function is shown in Fig. 6. With
both the strip Green method and the numerical simulations we find self-localized waveguides
in the diatomic photonic crystal. A comparison of the modal energy is shown in Fig. 7. We
see a good agreement between the two methods, as expected. However, with the semi-analytic
method it is easier to cover the wholekx-range. An example of a propagating self-localized
waveguide is depicted in Fig. 8. Notice how in this case the staggered Green’s function gives
rise to an unstaggered mode, which is also shown by the unstaggered strip Green’s function in
Fig. 6b. Indeed, if the rods aside from the central column have a larger field than the center rod,
and if they are multiplied by the appropriate phase factor (see Eq. (6)), the sign can change.

Stationary 2D modes also appear in the diatomic photonic crystal [21]. However, because
these solitons are zero-dimensional, such as point-defect modes, their description needs one
degree of freedom less. There, one frequency leads to one mode. This is in contrast with our
self-localized waveguides, where one frequency leads to a one-parameter family of modes,
characterized by the Bloch constantkx.
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6. Conclusion

We have developed a consistent theory of nonlinear solitonlike Bloch waves, inducing their
own waveguide into a monoatomic or a diatomic photonic crystal with a Kerr-type material in
the rods. We have shown that it is possible to reduce this effectively two-dimensional problem
to one dimension by only studying a strip of the photonic crystal. We have demonstrated that
these Bloch modes can be adequately described by a nonlinear lattice model that includes the
long-range interaction, necessary to describe diffraction and interference, and an effectively
nonlocal nonlinear response. This semi-analytical approach was compared with a more rigorous
numerical technique [14]. Overall qualitative agreement was found to be good.
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