

Norwegian Electro-optics Meeting, May 2-4, 2004, Tønsberg

NANO-PHOTONIC INTEGRATED CIRCUITS the promise and the problems

Roel Baets

Ghent University - IMEC INTEC department Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium baets@intec.ugent.be http://photonics.intec.ugent.be

- Introduction to nano-photonics
- Nano-photonic ICs
- Challenges
 - in the physics
 - in the technology
 - in the packaging

Nano-photonics: what

Photonics:

generation, transport, processing and detection of light

Nano-photonics:

same, whereby light interacts with material features with a scale in the range of a few nm to a few 100 nm (in (one,) two or three dimensions)

Nano-photonics: a broad field

• linear and non-linear response of nano-composite materials

- size of nano-particles<< 1 ® effective medium
- strong surface plasmon resonant enhancement for metallic nanoparticles
- **potential of very strong** $c^{(3)}$ (plasmon enhancement)
- interband transitions in semiconductor nanoparticles
 - quantum dots and wires (size << 1)</p>
 - strong modification of electronic bandstructure
 - **potential of strong** $c^{(3)}$ (electronic enhancement)
- wavelength scale high refractive index contrast structures
 - modification of SpE in wavelength scale microcavities
 - modification of propagation by means of photonic crystals
 - ultra-compact photonic circuits, photonic crystal fiber
 - **potential of strong** $c^{(3)}$ (optical enhancement)

THIS PRESENTATION

- Introduction to nano-photonics
- Nano-photonic ICs
- Challenges
 - in the physics
 - in the technology
 - in the packaging

Photonic Integrated Circuits (PICs)

What ?

- ICs in which sub-components are interconnected by optical waveguides
- sub-components :
 - passive wavelength selective components
 - electrically driven modulators, light sources, optical amplifiers, detectors, wavelength converters...
 - ...

fabrication by wafer-scale micro-electronic technologies

© intec 2004

Photonic Integrated Circu

Why integrate ?

- Economics of wafer scale integration
- Compact implementation of complex functions (systems-on-a-chip)
- Higher performance
- **!!!** Alignment of photonic components automatically ensured by lithographic methods **!!!**

E.g. Double-PHASAR X-connect (TU Delft)

Crossconnects

Ref.: Herben et al., IEEE PTL 10(5), pp. 678-680 (1998)

© intec 2004

Scale difference

<i>Electronics</i> interconnects gate transistor width	flip-flop			
Active opto-electronics Wavelength-scale photonics	L VCSEL	detector ED stripe la 2F	lser R regenera	ıtor
Passive photonicsWavelength-scalephotonicsIIICI	fibre core newidth in arrent PIC	sı co Bend radius	taper pot-size onvertor	AWG in Silica on Silicon
IOOnm 1μm © intec 2004	10µm	100µm	1mm http://phot	lcm onics.intec.ugent.be

a les the

PICs: today and future

```
Today (InP, Silica-on-Silicon...):
```

```
• size of components on a chip (both functional components
and interconnect components):
10^3 - 10^6 \text{ mm}^2
```

•number of components on a chip: 1 - 10³

Future (10-20 years from now):

 size of components on a chip (both functional components and interconnect components):

1 - 10³ mm²

•number of components on a chip: 10³ - 10⁶

-

Reduce PIC-size / increase density

WE NEED:

Ultra-compact waveguiding with

- Sharp bends (Bend radius < 10mm)
- Compact splitters and combiners
- Short mode-conversion distances
- **Compact wavelength selective functions**
 - Highly dispersive element
 - Small, high-Q resonators
- **Compact non-linear functions**
 - Increase power density by using tight confinement

High refractive index contrast (>2:1)

- High refractive index contrast allows for:
- very tight bends

- compact resonators with low loss
- wide angle mirrors
- very compact mode size
 - --> strong field strength
 --> strong non-linear effects
 - --> small volume to be pumped in active devices
 --> faster and/or lower power
- photonic bandgap effects

R high refractive index contrast is the key for ultra-compact photonic circuits

© intec 2004

Ultra-compact waveguide candidates

Photonic Crystal waveguides:

- in-plane: high contrast photonic crystal defect
- out-of-plane: TIR

Photonic Wires:

- in-plane: high contrast TIR
- out-of-plane: TIR

Guided Bloch mode conditions

Compact bends

Photonic Crystal

• Light is confined by the PBG

Photonic Wire

 Deep etch allows for short bend radius (a few mm)

0

• Corner mirrors

© intec 2004

ndex Contrast

Materials for nanophotonic waveguides

Si/SiO ₂ (SOI)	In-plane index contrast 3.5 to 1	Out-of-plane index contrast 3.5 to 1.5
Si/air	3.5 to 1	3.5 to 1
(membrane) GaAs/AlOx	3.5 to 1	3.5 to 1.5
InP/SiO ₂	3.3 to 1	3.3 to 1.5
SiON/SiO ₂	2 to 1.5/1	2 to 1.5
GaAs/AlGaAs	3.5 to 1	3.5 to 3.2
InGaAsP/InP	3.3 to 1	3.3 to 3.17

Spectral accuracy and geometrical accuracy

High index contrast components:

- interference based filters,

with d the waveguide width (»1)

- cavity resonance wavelength

with d the cavity length (a few 1)

- photonic crystal

with d the hole diameter (»1)

Ultra-compact waveguide candidates

Photonic Crystal waveguides:

- in-plane: high contrast photonic crystal defect
- out-of-plane: TIR

Photonic Wires:

- in-plane: high contrast TIR
- out-of-plane: TIR

Both cases: • feature size : 50-500 nm • required accuracy of features: 1-10 nm NANO-PHOTONIC waveguides

Ring resonator based add-drop filter

Hryniewcz et al.

- Waveguide width: .42-.62mm
- Straight guides: <10 dB/cm
- Bend radius: 4.5 mm

SOI Photonic crystal waveguides

SOI: Good vertical waveguide material

- Top Silicon layer: n = 3.45
- Oxide cladding layer: n=1.45

Fabrication at IMEC

- 248nm deep UV lithography
- Dry etching

Ring resonators in Silicon on Insulator

Introduction to nano-photonics

- Nano-photonic ICs
- Challenges
 - in the physics

TLINE

- in the technology
- in the packaging

Challenges in the physics.

- understand the various loss mechanisms
- high versus low index contrast in the vertical (out-of-plane) direction
- photonic wires versus photonic crystal waveguides
- impact of roughness
- ••

Losses of straight single mode waveguides

		index contrast index contrast index contrast			
	•	Low in-plane (Lip)	High in-plane (Hip)	In-plane	
Low out-of-plane (Lop) index contrast		SOS (<0.1dB/cm) InP (1 dB/cm) (AI)GaAs (1 dB/cm)	InP (wire: 50 d InP (crystal: few 10 (Al)GaAs (wire: 10	B/cm) 00 dB/cm) 0 dB/cm)	
	High out-of-plane (Hop) index contrast	SOI GaAs/AlOx	SOI (wire: 2-4 dB/cm) SOI (crystal: 7-15 dB/cm) GaAs/AlOx		
	Out-of-plane index contrast	Conventional photonic ICs	Future nanophotonic IC	S	

imec

imec

© intec 2004

osses of straight single mode waveguides

From state-of-the-art experimental results, it seems that:

- high (out-of-plane) index contrast is an order of magnitude better than low (out-ofplane) index contrast
- photonic wire is an order of magnitude better than photonic crystal

WHY?

Losses in compact waveguides

Photonic Crystal

- **Perfect in-plane guiding**
- Lack of vertical guiding in holes gives out-of-plane scattering losses
- irregularities will add more losses

Photonic Wire

- Perfect guiding in a perfectly made structure
- No PBG to stop the inplane scattering at irregularities

© intec 2004

Out-of-plane scattering losses

Question:

To keep out-of-plane scattering low, is it better to have low or high vertical index contrast in your layer structure?

Conventional waveguide (e.g. GaAs-AlGaAs-structure)

Semiconductor 'membrane', Silicon-on-Insulator, GaAs-AlOx

low contrast: 3.5 to 3.2 (∆ε ≈2) © intec 2004

High versus low vertical contrast

Low refractive index contrast

- Waveguide mode is above the light line
- Losses at discontinuities similar to losses in straight sections

High refractive index contrast

- Guided Bloch mode below the light line and does not scatter
- Discontinuities can scatter <u>massively</u>, unless properly designed

FIR guide versus photonic crystal guide

http://photonics.intec.ugent.be

© intec 2004

Introduction to nano-photonics

- Nano-photonic ICs
- Challenges
 - in the physics

TLINE

- in the technology
- in the packaging

Technologies for nano-photonic ICs

NANO-PHOTONIC waveguides

feature size : 50-500 nm

required accuracy of features: 1-10 nm (or better)

large field (at least cm²)

alignment to previous patterns: 100 nm accuracy

- maskless research and prototype technologies
 - e-beam lithography + reactive ion etching
 - focussed ion beam (FIB) etching
- mask-based manufacturing technologies
 - deep UV optical lithography + dry etching

Nanophotonics by means of CMOS technology

Why?

- Processes with very high performance and reproducibility
- Market for photonic ICs is relatively small: you cannot afford a dedicated fab
- Fabless company model can work

MEC's Deep UV Lithography for CMOS

248nm excimer laser Lithography

- ASML PAS 5500/300 Stepper and PAS 5500/750 Step-andscan Stepper
- Automated in-line processing (spin-coating, pre- and post-bake, development)
- 4X reticles
- Standard process

© intec 2004

Racetrack resonators

- symmetrically coupled
- wire width = 450nm, gap = 250nm
- **k** » 0.3 , ring loss » 7.5dB/mm
- finesse 28, Q » 3200

11

imec

© intec 2004

-30

normalized transmission [dB]

pass

10µm

Ring resonator

- Ring radius = 5mm
- TE polarisation
- Q » 8000, Finesse » 88
- FWHM » 0.19nm
- FSR = 17nm

Lots of holes on a 200 mm wafer

© intec 2004

Photonic crystal Waveguides

W3 waveguide

- pitch = 460nm
- hole Ø = 290nm

Introduction to nano-photonics

- Nano-photonic ICs
- Challenges
 - in the physics

TLINE

- in the technology
- in the packaging

Fibre coupling

InP ridge wg

Mode mismatch between waveguide and fibre

SM-fibre core

http://photonics.intec

d mm

S

© intec 2004

Coupling to fiber

- polymer on SOI taper (POSOI)
- NTT Notomi
- < 0.5dB coupling loss between
 0.2mm x 0.4mm waveguide and 4mm Æ fiber

- 10

Surface fiber coupler

- Coupling by butt coupled fiber
- Coupling area: 10x10 micron
- Allows wafer-level testing
- tolerant alignment
- coupling efficiency (theory): 30-80%
- coupling efficiency to butt-coupled fiber (experim.): 25-33% (Ghent University- IMEC)
- UCLA (CLEO, June 2003): higher efficiency by means of extra layers above grating

http://photonics.intec.ugent.be

Single mode fiber core

Shallow fibre couplers

imec

© intec 2004

Fibre Coupler Measurement setup

Fibre couplers

Fibre to fibre:

- -14 dB maximum transmission
- 60nm 6dB bandwidth

Per coupler: 1500 1525 1550 1575 1600 wavelength [nm] • 60nm 3dB bandwidth -14dB -15 Pout [dB] -20 >60nm -25 -30 -35 -40 © intec 2004 http://photonics.intec.ugent.be

nterferometric couplers

A12 -00

- much shorter than adiabatic tapers
- optimized by means of genetic algorithms

2D grating fiber couple

Fiber to waveguide interface for polarisation independent photonic integrated circuit

- 2D grating
- couples each fiber polarisation in its own waveguide
- in the waveguides the polarisation is the same (TE)
- Allows for <u>polarisation</u> <u>diversity</u> approach

Experimental results

Fabrication

- SOI: 220nm Si / 1000nm SiO₂
- Etch depth: 90nm
- Square lattice of holes: 580nm period

- -

© intec 2004

Conclusions

• Nano-photonic ICs based upon wavelength scale high index contrast structures have a huge potential and can bring LSI-level integration into the world of photonics.

• The understanding of the physics and the required technologies are all making rapid progress.

• Nano-photonic ICs can take advantage of the nanostructuring technologies developed for next-generation micro-electronics.

12 10

Acknowledgements

the European PICCO project

http://photonics.intec.ugent.be/picco

- the SPT-division at IMEC
- the photonics group at Ghent University-IMEC

© intec 2004